1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/* -*- mode: C++; indent-tabs-mode: nil; fill-column: 100; c-basic-offset: 4; -*-
*
* Copyright (C) 1996 Tim Witham <twitham@pcocd2.intel.com>
* Copyright (C) 2014 Gerhard Schiller <gerhard.schiller@gmail.com>
*
* (see the files README and COPYING for more details)
*
* This file implements the interface to the FFTW-library for xoscope.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <fftw3.h>
#include "xoscope.h"
#include "fft.h"
#include "display.h"
#include "func.h"
#include "xoscope_gtk.h"
#ifdef TIME_FFT
#include <time.h>
#endif
double *dp = NULL;
fftw_complex *cp = NULL;
fftw_plan plan = NULL;
/* fftLenIn: Length of input to fftW().
* Equal to ch[0].signal->width if <= 16 384
* or else rounded down to a power of 2.
*/
int fftLenIn = -1;
int xLayOut[FFT_DSP_LEN + 1]; /* Array of bin #'s displayed */
/* Fast Fourier Transform of in to out */
void fftW(short *in, short *out, int inLen)
{
int k;
#ifdef TIME_FFT
clock_t begin, end;
double time_spent;
#endif
for (k = 0; k < inLen && k < fftLenIn; k++) {
dp[k] = (double)in[k];
}
#ifdef TIME_FFT
begin = clock();
#endif
fftw_execute(plan);
displayFFT(cp, out);
#ifdef TIME_FFT
end = clock();
time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
fprintf(stderr, "Time to execute: %.3f ms\n", time_spent * 1000.0);
#endif
}
void InitializeFFTW(int inLen)
{
#ifdef TIME_FFT
clock_t begin, end;
double time_spent;
#endif
if ((dp = (double *)malloc(sizeof (double) * inLen)) == NULL) {
fprintf(stderr, "malloc failed in InitializeFFTW()\n");
exit(0);
}
memset(dp, 0, sizeof (double) * inLen);
if ((cp = (fftw_complex *)fftw_malloc(sizeof (fftw_complex) * ((inLen / 2) +1 ))) == NULL) {
fprintf(stderr, "fftw_malloc failed in InitializeFFTW()\n");
exit(0);
}
memset(cp, 0, sizeof (fftw_complex) * ((inLen / 2) +1 ));
/* FFTW_MEASURE with huge (some 100.000) samples takes several seconds even for
* sizes that are a power of 2.
* On the other hand, execution time stays well below 5 ms with huge samples
* if we only do a FFTW_ESTIMATE.
*/
#ifdef TIME_FFT
begin = clock();
#endif
if ((plan = fftw_plan_dft_r2c_1d(inLen, dp, cp, FFTW_ESTIMATE)) == NULL) {
fprintf(stderr, "fftw_plan failed in InitializeFFTW()\n");
exit(0);
}
#ifdef TIME_FFT
end = clock();
time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
fprintf(stderr, "Time to plan: %.3f s\n", time_spent);
#endif
}
/* special isvalid() functions for FFT
*
* First, it allocates memory for the generated fft and initializes the fftw library.
*
* Second, it sets the "rate", so that the increment from grid line to grid line is some "nice"
* value. (a muliple of 500 Hz if increment is > 1kHz, otherwise a multiple of 100 hZ.
*
* Third: this value is stored in the "volts" member of the dest signal structure. It is only
* displayed in the label.
*/
int FFTactive(Signal *source, Signal *dest, int rateChange)
{
int lenIn, HzDiv, HzDivAdj;
if (source == NULL) {
dest->rate = 0;
return 0;
}
if(source->width < 128){
message("Too few samples to run FFT");
EndFFTW();
if(dest->data != NULL){
bzero(dest->data, (FFT_DSP_LEN) * sizeof(short));
}
return 0;
}
if(dest->data == NULL){
if((dest->data = malloc((FFT_DSP_LEN) * sizeof(short))) == NULL){
fprintf(stderr, "malloc failed in FFTactive()\n");
exit(0);
}
bzero(dest->data, (FFT_DSP_LEN) * sizeof(short));
dest->width = FFT_DSP_LEN;
dest->frame = 0;
dest->num = FFT_DSP_LEN;
}
if(rateChange){
/* Either first call or time base changed,
* so the number of samples changed too and
* we must reinitialize fftw
*/
if (fftLenIn != -1) {
EndFFTW();
}
/* if we have more than 16 384 samples, we round them down to a power of 2 */
if(source->width < (2 << 14)){
lenIn = source->width;
}
else if(source->width < (2 << 16)){
lenIn = floor2(source->width);
}
else {
lenIn = 2 << 16;
}
InitializeFFTW(lenIn);
fftLenIn = lenIn;
initGraphX();
// (signal->rate / 2) = max FFT-freq
HzDiv = source->rate / 2 / total_horizontal_divisions;
if(HzDiv > 1000)
HzDivAdj = HzDiv - (HzDiv % 500) + 500;
else
HzDivAdj = HzDiv - (HzDiv % 100) + 100;
dest->volts = HzDivAdj;
dest->rate = (((double)source->rate / (double)source->width) * (double)FFT_DSP_LEN)+0.5;
dest->rate *= (gfloat)HzDivAdj / (gfloat)HzDiv;
dest->rate *= -1;
bzero(dest->data, FFT_DSP_LEN * sizeof(short));
}
return 1;
}
void EndFFTW(void)
{
if (plan != NULL) {
fftw_destroy_plan(plan);
plan = NULL;
}
if (dp != NULL) {
free(dp);
dp = NULL;
}
if (cp != NULL) {
fftw_free(cp);
cp = NULL;
}
fftLenIn = -1;
}
int floor2(int num)
{
int num2 = 1;
while(num2 < num){
num2 <<= 1;
}
num2 >>= 1;
return(num2);
}
short calcDv(int FFTindex)
{
double re, im, mag;
short dv;
re = cp[FFTindex][0];
im = cp[FFTindex][1];
mag = sqrt((re * re) + (im * im)) / 256.0;
if (mag >= (1<<(sizeof(short) * 8 - 1))) { /* avoid overflowing the short */
mag = (1<<(sizeof(short) * 8 - 1)) - 1; /* max short = 2^15 */
}
dv = (short)(mag + 0.5);
return(dv);
}
void displayFFT(fftw_complex *cp, short *out)
{
long y = 0, y2 = 0;
int DSPindex, FFTindex;
short *pOut = out;
for(DSPindex = 0, FFTindex = xLayOut[0];
DSPindex < FFT_DSP_LEN && FFTindex < (fftLenIn / 2); DSPindex++){
FFTindex = xLayOut[DSPindex];
/*
* If this line is the same as the previous one,
* (FFTindex == -1) just use the previous y value.
* Else go ahead and compute the value.
*/
if(FFTindex != -1){
y = calcDv(FFTindex);
for(; FFTindex < xLayOut[DSPindex+1]; FFTindex++){
y2 = calcDv(FFTindex);
if(y2 > y){
y = y2;
}
}
}
*pOut++ = y;
}
}
void initGraphX()
{
int DSPindex;
int val;
/*
* xLayOut: an array that hold indicies to indacte which resutlts of the fft
* to to combine into one point of the graph.
* In case we have fewer results from the fft than FFT_DSP_LEN, we repeat
* point. This is indicated by a "-1".
*/
for(DSPindex = 0; DSPindex < (FFT_DSP_LEN + 1); DSPindex++){
val = floor(((DSPindex * (double)fftLenIn / 2.0) / (double)FFT_DSP_LEN ) + 0.5);
if(val < 0)
val=0;
if(val >= fftLenIn / 2)
val = fftLenIn / 2 - 1;
if(DSPindex <= FFT_DSP_LEN)
xLayOut[DSPindex] = val + 1; /* the +1 takes care of the DC-Value in the fft result */
}
/*
* If lines are repeated on the screen, flag this so that we don't
* have to recompute the y values.
*/
for(DSPindex = FFT_DSP_LEN - 1; DSPindex > 0; DSPindex--){
if(xLayOut[DSPindex] == xLayOut[DSPindex-1]){
xLayOut[DSPindex] = -1;
}
}
}
|