1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
|
/*
* @(#)$Id: func.c,v 1.28 2003/06/17 22:52:32 baccala Exp $
*
* Copyright (C) 1996 - 2001 Tim Witham <twitham@quiknet.com>
*
* (see the files README and COPYING for more details)
*
* This file implements the signal math and memory.
* To add math functions, search for !!! and add to those sections.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "oscope.h"
#include "fft.h"
#include "display.h"
#include "func.h"
Signal mem[26]; /* 26 memories, corresponding to 26 letters */
/* recall given memory register to the currently selected signal */
void
recall_on_channel(Signal *signal, Channel *ch)
{
if (ch->signal) ch->signal->listeners --;
ch->signal = signal;
if (signal) {
signal->listeners ++;
/* no guarantee that signal->bits will be correct yet */
ch->bits = signal->bits;
}
}
void
recall(Signal *signal)
{
recall_on_channel(signal, &ch[scope.select]);
}
/* store the currently selected signal to the given memory register */
void
save(char c)
{
int i;
i = c - 'A';
if (ch[scope.select].signal == NULL) return;
#if 1
/* Don't want the name - leave that at 'Memory x'
* Also, increment frame instead of setting it to signal->frame in
* case signal->frame is the same as mem's old frame number!
*/
memcpy(mem[i].data, ch[scope.select].signal->data, MAXWID * sizeof(short));
mem[i].rate = ch[scope.select].signal->rate;
mem[i].num = ch[scope.select].signal->num;
mem[i].frame ++;
mem[i].volts = ch[scope.select].signal->volts;
//mem[i].color = ch[scope.select].color;
#else
memcpy(&mem[i], ch[scope.select].signal, sizeof(Signal));
#endif
}
/* !!! External process handling
*
* Could use some work... the original code (xoscope-1.8) always sent
* the first h_points data points from the first two display channels
* through to the external process, even if the scaling on those
* channels was set up so that weren't h_points of valid data, or
* set down so that what was displayed was way more than h_points.
* In any event, I'm not a big fan of these math functions, so
* I just left it alone like that.
*/
struct external {
struct external *next;
Signal signal;
int pid; /* Zero if we already closed it down */
int to, from; /* Pipes */
int last_frame_ch0, last_frame_ch1;
int last_num_ch0, last_num_ch1;
};
static struct external *externals = NULL;
/* startcommand() / start_command_on_channel()
*
* Start an external command running on the current display channel.
*
* gr_* UIs call this after prompting for command to run
*/
void
start_command_on_channel(char *command, Channel *ch)
{
struct external *ext;
int pid;
int from[2], to[2];
static char *path, *oscopepath;
if (pipe(to) || pipe(from)) { /* get a set of pipes */
sprintf(error, "%s: can't create pipes", progname);
perror(error);
return;
}
signal(SIGPIPE, SIG_IGN);
if ((pid = fork()) > 0) { /* parent */
close(to[0]);
close(from[1]);
} else if (pid == 0) { /* child */
close(to[1]);
close(from[0]);
close(0);
close(1); /* redirect stdin/out through pipes */
dup2(to[0], 0);
dup2(from[1], 1);
close(to[0]);
close(from[1]);
/* XXX add additional environment vars here for sampling rate
* and number of samples per frame
*/
if ((oscopepath = getenv("OSCOPEPATH")) == NULL)
oscopepath = PACKAGE_LIBEXEC_DIR;
if ((path = malloc(strlen(oscopepath) + 6)) != NULL) {
sprintf(path,"PATH=%s", oscopepath);
putenv(path);
/* putenv() requires buffer to stick around, so no free(),
* but we're in the child, and about to exec, so no big deal
*/
}
execlp("/bin/sh", "sh", "-c", command, NULL);
sprintf(error, "%s: child can't exec /bin/sh -c \"%s\"",
progname, command);
perror(error);
exit(1);
} else { /* fork error */
sprintf(error, "%s: can't fork", progname);
perror(error);
return;
}
ext = malloc(sizeof(struct external));
if (ext == NULL) {
fprintf(stderr, "malloc() struct external failed\n");
return;
}
bzero(ext, sizeof(struct external));
strncpy(ext->signal.savestr, command, sizeof(ext->signal.savestr));
ext->pid = pid;
ext->from = from[0];
ext->to = to[1];
ext->next = externals;
externals = ext;
message(command, ch->color);
recall_on_channel(&ext->signal, ch);
}
void
startcommand(char *command)
{
if (scope.select > 1) {
start_command_on_channel(command, &ch[scope.select]);
clear();
}
}
/* Check everything on the externals list; run what needs to be run,
* and clean up anything left linguring behind.
*/
static void
run_externals(void)
{
struct external *ext;
short *a, *b, *c;
int i, errors;
for (ext = externals; ext != NULL; ext = ext->next) {
if (ext->signal.listeners > 0) {
if ((ext->pid > 0) && (ch[0].signal != NULL) && (ch[1].signal != NULL)) {
/* There's a slight chance that if we change one of the channels,
* the new channel may have a frame number identical to the last
* one, but that shouldn't hurt us too bad.
*/
if ((ch[0].signal->frame != ext->last_frame_ch0) ||
(ch[1].signal->frame != ext->last_frame_ch1)) {
ext->last_frame_ch0 = ch[0].signal->frame;
ext->last_frame_ch1 = ch[1].signal->frame;
ext->signal.frame ++;
ext->signal.num = 0;
}
/* We may already have sent and received part of a frame, so
* start our pointers at whatever our last offset was, and
* keep going until we hit the limit of either channel 0
* or channel 1. XXX explain this better
* XXX make sure this can't slow the program down!
*/
a = ch[0].signal->data + ext->signal.num;
b = ch[1].signal->data + ext->signal.num;
c = ext->signal.data + ext->signal.num;
errors = 0;
for (i = ext->signal.num;
(i < ch[0].signal->num) && (i < ch[1].signal->num); i++) {
if (write(ext->to, a++, sizeof(short)) != sizeof(short))
errors ++;
if (write(ext->to, b++, sizeof(short)) != sizeof(short))
errors ++;
if (read(ext->from, c++, sizeof(short)) != sizeof(short))
errors ++;
}
ext->signal.num = i;
if (errors) {
sprintf(error, "%s: %d pipe r/w errors from \"%s\"",
progname, errors, ext->signal.savestr);
perror(error);
/* XXX do something here other than perror to notify user */
close(ext->from);
close(ext->to);
waitpid(ext->pid, NULL, 0);
ext->pid = 0;
}
}
} else {
/* Nobody listening anymore; close down the pipes and wait for
* process to exit. Maybe we should timeout in case of a hang?
*/
if (ext->pid) {
close(ext->from);
close(ext->to);
waitpid(ext->pid, NULL, 0);
}
/* Delete ext from list and free() it */
}
}
}
/* !!! The functions; they take one arg: a Signal ptr to store results in */
/* Invert */
void
inv(Signal *dest, Signal *src)
{
int i;
short *a, *b;
if (src == NULL) return;
dest->rate = src->rate;
dest->num = src->num;
dest->volts = src->volts;
dest->frame = src->frame;
a = src->data;
b = dest->data;
for (i = 0 ; i < src->num; i++) {
*b++ = -1 * *a++;
}
}
void
inv1(Signal *sig)
{
inv(sig, ch[0].signal);
}
void
inv2(Signal *sig)
{
inv(sig, ch[1].signal);
}
/* The sum of the two channels */
void
sum(Signal *dest)
{
int i;
short *a, *b, *c;
if ((ch[0].signal == NULL) || (ch[1].signal == NULL)) return;
a = ch[0].signal->data;
b = ch[1].signal->data;
c = dest->data;
dest->frame = ch[0].signal->frame + ch[1].signal->frame;
dest->num = ch[0].signal->num;
if (dest->num > ch[1].signal->num) dest->num = ch[1].signal->num;
for (i = 0 ; i < dest->num ; i++) {
*c++ = *a++ + *b++;
}
}
/* The difference of the two channels */
void
diff(Signal *dest)
{
int i;
short *a, *b, *c;
if ((ch[0].signal == NULL) || (ch[1].signal == NULL)) return;
a = ch[0].signal->data;
b = ch[1].signal->data;
c = dest->data;
dest->frame = ch[0].signal->frame + ch[1].signal->frame;
dest->num = ch[0].signal->num;
if (dest->num > ch[1].signal->num) dest->num = ch[1].signal->num;
for (i = 0 ; i < dest->num ; i++) {
*c++ = *a++ - *b++;
}
}
/* The average of the two channels */
void
avg(Signal *dest)
{
int i;
short *a, *b, *c;
if ((ch[0].signal == NULL) || (ch[1].signal == NULL)) return;
a = ch[0].signal->data;
b = ch[1].signal->data;
c = dest->data;
dest->frame = ch[0].signal->frame + ch[1].signal->frame;
dest->num = ch[0].signal->num;
if (dest->num > ch[1].signal->num) dest->num = ch[1].signal->num;
for (i = 0 ; i < dest->num ; i++) {
*c++ = (*a++ + *b++) / 2;
}
}
/* Fast Fourier Transform of channels 0 and 1
*
* The point of the dest->frame calculation is that the value changes
* whenever the data changes, but if the data is constant, it doesn't
* change. The display code only looks at changes in frame number to
* decide when to redraw a signal; the actual value doesn't matter.
*/
void
fft1(Signal *dest)
{
if (ch[0].signal == NULL) return;
dest->num = 440;
dest->frame = 10000 * ch[0].signal->frame + ch[0].signal->num;
fft(ch[0].signal->data, dest->data);
}
void
fft2(Signal *dest)
{
if (ch[1].signal == NULL) return;
dest->num = 440;
dest->frame = 10000 * ch[1].signal->frame + ch[1].signal->num;
fft(ch[1].signal->data, dest->data);
}
/* isvalid() functions for the various math functions.
*
* These functions also have the side effect of setting the volts/rate
* fields in the Signal structure, something we count on happening
* whenever we call update_math_signals(), which calls these
* functions.
*/
int ch1active(Signal *dest)
{
dest->frame = 0;
dest->num = 0;
if (ch[0].signal == NULL) {
dest->rate = 0;
dest->volts = 0;
return 0;
} else {
dest->rate = ch[0].signal->rate;
dest->volts = ch[0].signal->volts;
return 1;
}
}
int ch2active(Signal *dest)
{
dest->frame = 0;
dest->num = 0;
if (ch[1].signal == NULL) {
dest->rate = 0;
dest->volts = 0;
return 0;
} else {
dest->rate = ch[1].signal->rate;
dest->volts = ch[1].signal->volts;
return 1;
}
}
int chs12active(Signal *dest)
{
dest->frame = 0;
dest->num = 0;
if ((ch[0].signal == NULL) || (ch[1].signal == NULL)
|| (ch[0].signal->rate != ch[1].signal->rate)
|| (ch[0].signal->volts != ch[1].signal->volts)) {
dest->rate = 0;
dest->volts = 0;
return 0;
} else {
dest->rate = ch[0].signal->rate;
dest->volts = ch[0].signal->volts;
return 1;
}
}
/* special isvalid() functions for FFT
*
* A considerable majority of the code in fft.c is devoted to scaling
* the FFT so that it fits in WINDOW_RIGHT - WINDOW_LEFT = 540 - 100 =
* 440 values. The stored rate (negated to indicate that it's in
* Hz/sample, not samples/sec), is the frequency increment of each
* sample value in Hz, times 10. Since the maximum frequency in
* an FFT is half the sampling rate, we divide that sampling rate
* by two, then by 440 to get Hz per sample, then multiply by 10,
* for a net of dividing by 88. This is also how we get a value
* of 440 for dest->num (used above, in actual FFT functions).
*/
int ch1FFTactive(Signal *dest)
{
dest->frame = 0;
dest->num = 0;
dest->volts = 0;
if (ch[0].signal == NULL) {
dest->rate = 0;
return 0;
} else {
dest->rate = -ch[0].signal->rate / 80;
return 1;
}
}
int ch2FFTactive(Signal *dest)
{
dest->frame = 0;
dest->num = 0;
dest->volts = 0;
if (ch[1].signal == NULL) {
dest->rate = 0;
return 0;
} else {
dest->rate = -ch[1].signal->rate / 80;
return 1;
}
}
struct func {
void (*func)(Signal *);
char *name;
int (*isvalid)(Signal *); /* returns TRUE if this function is valid */
Signal signal;
};
struct func funcarray[] =
{
{inv1, "Inv. 1 ", ch1active},
{inv2, "Inv. 2 ", ch2active},
{sum, "Sum 1+2", chs12active},
{diff, "Diff 1-2", chs12active},
{avg, "Avg. 1,2", chs12active},
{fft1, "FFT. 1 ", ch1FFTactive},
{fft2, "FFT. 2 ", ch2FFTactive},
};
/* the total number of "functions" */
int funccount = sizeof(funcarray) / sizeof(struct func);
/* Cycle current scope chan to next function, taking heavy advantage
* of C incrementing pointers by the size of the thing they point to.
* Start by finding the current function in the function array that
* the channel is pointing to, and advancing to the next one,
* selecting the first item in the array if either we're currently
* pointing to the end of the array or pointing to something other
* than a function. Then keep going, looking for the first function
* that returns TRUE to an isvalid() test, taking care that none of
* the functions may currently be valid.
*/
void next_func(void)
{
struct func *func, *func2;
Channel *chan = &ch[scope.select];
for (func = &funcarray[0]; func < &funcarray[funccount]; func++) {
if (chan->signal == &func->signal) break;
}
if (func == &funcarray[funccount]) func = &funcarray[0];
else if (func == &funcarray[funccount-1]) func = &funcarray[0];
else func ++;
/* At this point, func points to the candidate function structure.
* See if it's valid, and keep going forward if it isn't
*/
func2 = func;
do {
if (func->isvalid(&func->signal)) {
recall(&func->signal);
return;
}
func ++;
if (func == &funcarray[funccount]) func = &funcarray[0];
} while (func != func2);
/* If we're here, it's because we went through all the functions
* without finding one that returned valid. No choice but to
* clear the channel.
*/
recall(NULL);
}
/* Basically the same deal, but moving backwards in the array. */
void prev_func(void)
{
struct func *func, *func2;
Channel *chan = &ch[scope.select];
for (func = &funcarray[0]; func < &funcarray[funccount]; func++) {
if (chan->signal == &func->signal) break;
}
if (func == &funcarray[funccount]) func = &funcarray[funccount-1];
else if (func == &funcarray[0]) func = &funcarray[funccount-1];
else func --;
/* At this point, func points to the candidate function structure.
* See if it's valid and go further backwards if it isn't
*/
func2 = func;
do {
if (func->isvalid(&func->signal)) {
recall(&func->signal);
return;
}
func --;
if (func < &funcarray[0]) func = &funcarray[funccount-1];
} while (func != func2);
/* If we're here, it's because we went through all the functions
* without finding one that returned valid. No choice but to
* clear the channel.
*/
recall(NULL);
}
int function_bynum_on_channel(int fnum, Channel *ch)
{
if ((fnum >= 0) && (fnum < funccount)
&& funcarray[fnum].isvalid(&funcarray[fnum].signal)) {
recall_on_channel(&funcarray[fnum].signal, ch);
return TRUE;
}
return FALSE;
}
/* Initialize math, called once by main at startup */
void
init_math()
{
static int i;
for (i = 0 ; i < 26 ; i++) {
memset(mem[i].data, 0, MAXWID * sizeof(short));
mem[i].num = mem[i].frame = mem[i].volts = 0;
mem[i].listeners = 0;
sprintf(mem[i].name, "Memory %c", 'a' + i);
mem[i].savestr[0] = 'a' + i;
mem[i].savestr[1] = '\0';
}
for (i = 0; i < funccount; i++) {
strcpy(funcarray[i].signal.name, funcarray[i].name);
funcarray[i].signal.savestr[0] = '0' + i;
funcarray[i].signal.savestr[1] = '\0';
}
init_fft();
}
/* update_math_signals() is called whenever 'something' has changed in
* the scope settings, and we may need to recompute voltage and rate
* values for the generated math functions. We do this by calling all
* the isvalid() functions for those math functions that have
* listeners, and return 0 if everything's OK, or -1 if some of them
* are no longer valid.
*
* XXX I'm still not completely clear on just what we should
* do with invalid channels that have listeners; don't want to
* arbitrarily clear them (I don't think), because then a single
* inadvertent keystroke on channel 0 or 1 might clear a bunch of
* math.
*/
int
update_math_signals(void)
{
int i;
int retval = 0;
for (i = 0; i < funccount; i++) {
if (funcarray[i].signal.listeners > 0) {
if (! funcarray[i].isvalid(&funcarray[i].signal)) retval = -1;
}
}
return retval;
}
/* Perform any math on the software channels, called many times by main loop */
void
do_math()
{
static int i;
for (i = 0; i < funccount; i++) {
if (funcarray[i].signal.listeners > 0) {
funcarray[i].func(&funcarray[i].signal);
}
}
run_externals();
}
/* Perform any math cleanup, called once by cleanup at program exit */
void
cleanup_math()
{
EndFFT();
}
/* measure the given channel */
void
measure_data(Channel *sig, struct signal_stats *stats) {
static long int i, j, prev;
int min, max, midpoint;
float first = 0, last = 0, count = 0, imax = 0;
stats->min = 0;
stats->max = 0;
stats->time = 0;
stats->freq = 0;
if ((sig->signal == NULL) || (sig->signal->num == 0)) return;
prev = 1;
if (scope.curs) { /* manual cursor measurements */
if (scope.cursa < scope.cursb) {
first = scope.cursa;
last = scope.cursb;
} else {
first = scope.cursb;
last = scope.cursa;
}
stats->min = stats->max = sig->signal->data[(int)first];
if ((j = sig->signal->data[(int)last]) < stats->min)
stats->min = j;
else if (j > stats->max)
stats->max = j;
count = 2;
} else { /* automatic period measurements */
min = max = sig->signal->data[0];
for (i = 0 ; i < sig->signal->num ; i++) {
j = sig->signal->data[i];
if (j < min)
min = j;
if (j > max) {
max = j;
imax = i;
}
}
/* locate and count rising edges
* doesn't handle noise very well (noisy edges can get double counted)
*/
midpoint = (min + max)/2;
for (i = 0 ; i < sig->signal->num ; i++) {
j = sig->signal->data[i];
if (j > midpoint && prev <= midpoint) {
if (!first)
first = i;
last = i;
count++;
}
prev = j;
}
stats->min = min;
stats->max = max;
}
if (sig->signal->rate < 0) {
/* Special case for FFT - signal rate will be < 0, the negative of
* the frequency step for each point in the transform, times 10.
* So multiply by the index of the maximum value to get frequency peak.
*/
stats->freq = (- sig->signal->rate) * imax / 10;
if (stats->freq > 0)
stats->time = 1000000 / stats->freq;
} else if ((sig->signal->rate > 0) && (count > 1)) {
/* estimate frequency from rising edge count
* assume a wave: period = length / # periods
*/
stats->time = 1000000 * (last - first) / (count - 1) / sig->signal->rate;
if (stats->time > 0)
stats->freq = 1000000 / stats->time;
}
}
|